Simultaneity in Renewable Building Energy Supply—A Case Study on a Lecturing and Exhibition Building on a University Campus Located in the Cfb Climate Zone

Author:

Gehlert GuntherORCID,Wiegand MarliesORCID,Lymar Mariya,Huusmann Stefan

Abstract

A major issue in the renewable energy supply of buildings is to establish a simultaneity of the fluctuating renewable energy generation and the energy consumption in buildings. This work provides a new case for a better understanding of how to establish this simultaneity. Future solutions are being explored in practice on the campus of the FH Westküste University of Applied Sciences in the Lecturing and Exhibition Building (LEB). The motivation was to design and operate a case building for research in energy science for teaching the bachelor’s program Green Building Systems as well as for demonstration purposes for the general public. With a floor space of 207 m, the LEB is supplied with renewable energy from the adjacent energy park consisting of a 10 kW wind turbine and photovoltaic modules with 10 kWp. The heat and cold generation system consists of two reversible heat pumps: one is an air–water heat pump with approx. 7 kW heating and 6 kW cooling power, and the second is a brine–water heat pump with approx. 8 kW heating power and a depth of the two boreholes of 80 m. To match the energy generation and the energy consumption, different kinds of storage units, i.e., batteries with 3 × 8 kWh and storage tanks with 1000 L heat storage and 600 L cold storage, were installed as well as a smart automation system with a database. This paper evaluates measurement data from 2021. It is demonstrated that a fully renewable energy supply of the building is possible for most of the time from spring to autumn. In winter, an additional long-term energy storage, e.g., hydrogen, is necessary for certain days.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3