Speed Breeding Scheme of Hot Pepper through Light Environment Modification

Author:

Liu KaizheORCID,He Rui,He Xinyang,Tan Jiehui,Chen Yongkang,Li YaminORCID,Liu Rongyun,Huang Yanwu,Liu HouchengORCID

Abstract

Crop breeding for high yields and quality is an important measure to ensure food security. In conventional breeding, a long generation time is required. Speed breeding could accelerate the flowering and fruiting of crops by providing suitable environmental conditions in order to reduce the generation times. This study aimed to determine a speed breeding scheme for hot peppers. Two hot pepper varieties, ‘Xiangyan 55’ and ‘Xiangla 712’, were investigated for their growth and development under different light intensities, photoperiods, and red-to-far-red ratios. Hot pepper plants bloomed at 39.88 ± 0.74 days after sowing under photosynthetic photon flux density (PPFD) 420 µmol·m−2·s−1 and a 12-h photoperiod and had seed with acceptable germination rates at 82 days after sowing. Blooming was 2–3 days earlier when the photoperiod was extended to 20 h, but the fruit and seed development were not significantly improved. Supplementation of far-red light (R:FR = 2.1) significantly accelerated the red ripening of pepper fruit and improved seed germination rates. The modification of the light environment accelerated hot pepper growth and development, reduced breeding cycles, and could produce up to four generations per year.

Funder

National Key Research and Development Program of China

Key Research and Development Program of Ningxia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3