Impact of Land Cover Change on a Typical Mining Region and Its Ecological Environment Quality Evaluation Using Remote Sensing Based Ecological Index (RSEI)

Author:

Tang HuanORCID,Fang Jiawei,Xie Ruijie,Ji Xiuli,Li Dayong,Yuan JingORCID

Abstract

Ecological environment in mining cities has become an important part of ecological construction. This paper takes Tongling, a mining city, as the research area, and uses Landsat series remote sensing images from 2000 to 2020 as data sources. Using the principal component analysis method and the Remote Sensing Ecological Index (RSEI) integrated with four indexes of greenness, humidity, dryness, and heat, the ecological disturbance of the mining area was evaluated and studied. Meanwhile, the land cover spatiotemporal classification of Tongling city was extracted by the maximum likelihood method. Furthermore, landscape metrics were used, based on the information on open-pit mining areas, to quantitatively analyze the ecological environment quality and its change characteristics in the study area. The results show that (1) RSEI can better characterize the ecological quality of Tongling city, greenness and humidity are positively correlated with it, dryness and heat are negatively correlated with it, and dryness and RSEI have the highest correlation coefficient, indicating that urban expansion will cause ecological environment deterioration to a certain extent. (2) The ecological environment quality of the research area showed a “decline-rising” trend, and the mean value of RSEI decreased from 0.706 to 0.644. Spatially, the areas with poor RSEI are mainly distributed in the central urban area and the open-pit mining area in the south. (3) Land cover change leads to changes in landscape metrics, and most landscape-level metrics are positively or negatively correlated with RSEI. The more concentrated the land cover type distribution is, the smaller the change is, and the more regional RSEI can be improved. (4) The mean value of RESI of the ten open-pit mining areas in Tongling city decreased significantly, with a maximum decrease of 52.73%. Among them, the RESI decline rate in the area around the no.1 open pit mine is 0.034/year. The ecological degradation in Tongling city is attributed to the rapid expansion of built-up areas and the development of the mining industry. The research results can provide a scientific basis for protecting the ecological environment of mining cities.

Funder

Scientific Research Foundation of Education Department of Anhui Province of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3