Interpretable Dynamic Ensemble Selection Approach for the Prediction of Road Traffic Injury Severity: A Case Study of Pakistan’s National Highway N-5

Author:

Khattak Afaq,Almujibah HamadORCID,Elamary Ahmed,Matara Caroline MonginaORCID

Abstract

Road traffic accidents are among the top ten major causes of fatalities in the world, taking millions of lives annually. Machine-learning ensemble classifiers have been frequently used for the prediction of traffic injury severity. However, their inability to comprehend complex models due to their “black box” nature may lead to unrealistic traffic safety judgments. First, in this research, we propose three state-of-the-art Dynamic Ensemble Learning (DES) algorithms including Meta-Learning for Dynamic Ensemble Selection (META-DES), K-Nearest Oracle Elimination (KNORAE), and Dynamic Ensemble Selection Performance (DES-P), with Random Forest (RF), Adaptive Boosting (AdaBoost), Classification and Regression Tree (CART), and Binary Logistic Regression (BLR) as the base learners. The DES algorithm automatically chooses the subset of classifiers most likely to perform well for each new test instance to be classified when generating a prediction, making it more efficient and flexible. The META-DES model using RF as the base learner outperforms other models with accuracy (75%), recall (69%), precision (71%), and F1-score (72%). Afterwards, the risk factors are analyzed with SHapley Additive exPlanations (SHAP). The driver’s age, month of the year, day of the week, and vehicle type influence SHAP estimation the most. Young drivers are at a heightened risk of fatal accidents. Weekends and summer months see the most fatal injuries. The proposed novel META-DES-RF algorithm with SHAP for predicting injury severity may be of interest to traffic safety researchers.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3