Steady-State Data Baseline Model for Nonstationary Monitoring Data of Urban Girder Bridges

Author:

Zhang ShaoyiORCID,Wang Yongliang,Yu Kaiping

Abstract

In bridge structural health monitoring systems, an accurate baseline model is particularly important for identifying subsequent structural damage. Environmental and operational loads cause nonstationarity in the strain monitoring data of urban girder bridges. Such nonstationary monitoring data can mask damage and reduce the accuracy of the established baseline model. To address this problem, a steady-state data baseline model for bridges is proposed. First, for observable effects such as ambient temperature, a directional projection decoupling method for strain monitoring data is proposed, which can reduce the nonstationary effect of ambient temperature, and the effectiveness of this method is proven using equations. Second, for unobservable effects such as traffic load, a k-means clustering method for steady state of traffic loads is proposed; using this method, which can divide the steady and nonsteady states of traffic loads and reduce the nonstationary effect of traffic loads on strain monitoring data, a steady-state baseline model is established. Finally, the effectiveness of the steady-state baseline model is verified using an actual bridge. The results show that the proposed baseline model can reduce the error caused by nonstationary effects, improve the modelling accuracy, and provide useful information for subsequent damage identification.

Funder

Heilongjiang Postdoctoral Fund

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3