Abstract
In bridge structural health monitoring systems, an accurate baseline model is particularly important for identifying subsequent structural damage. Environmental and operational loads cause nonstationarity in the strain monitoring data of urban girder bridges. Such nonstationary monitoring data can mask damage and reduce the accuracy of the established baseline model. To address this problem, a steady-state data baseline model for bridges is proposed. First, for observable effects such as ambient temperature, a directional projection decoupling method for strain monitoring data is proposed, which can reduce the nonstationary effect of ambient temperature, and the effectiveness of this method is proven using equations. Second, for unobservable effects such as traffic load, a k-means clustering method for steady state of traffic loads is proposed; using this method, which can divide the steady and nonsteady states of traffic loads and reduce the nonstationary effect of traffic loads on strain monitoring data, a steady-state baseline model is established. Finally, the effectiveness of the steady-state baseline model is verified using an actual bridge. The results show that the proposed baseline model can reduce the error caused by nonstationary effects, improve the modelling accuracy, and provide useful information for subsequent damage identification.
Funder
Heilongjiang Postdoctoral Fund
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献