Influence of Organic Amendments on Soil Carbon Sequestration Potential of Paddy Soils under Two Irrigation Regimes

Author:

Yeasmin SabinaORCID,Assaduzzaman ,Kabir Md. Shirajul,Anwar Md. ParvezORCID,Islam A. K. M. MominulORCID,Hoque Tahsina Sharmin

Abstract

Soil organic carbon (OC) is one of the most important soil components regulating soil quality, fertility and agronomic productivity as well as the global carbon (C) cycle. Soil acts as a sink for global C, which can be influenced by the water regime and organic matter (OM) management in field. The aim of this study is to evaluate the effect of the application of different organic amendments on C sequestration in paddy soils under contrasting irrigation regimes. A 4-month pot experiment was conducted under net house conditions and the treatments were composed of two organic amendments: rice straw (RS) and poultry manure (PM); four application rates of amendment: 0 g (control), 2.5 g, 5.0 g and 15.0 g kg−1 soil; and two irrigation regimes: (i) continuous waterlogging condition (CWL) and (ii) alternate wetting and drying (AWD). After the incubation period, soil samples were collected from the pot and isolated into labile (>53 µm) and mineral-associated (<53 µm) OM. Bulk (before and after incubation) and fractionated soil samples were analyzed for OC, total nitrogen (N), C:N ratio; and C sequestration percentage was calculated. Relatively higher amounts of soil OC were present in CWL condition (1.23%) than AWD (1.13%). The C sequestration potential also showed the similar trend (CWL: 47% > AWD: 35%). This was explained by the induced aerobic condition in between the anerobic condition in AWD and the continuous anaerobic condition in CWL which resulted in a difference in OM decomposition. The mineral-associated OM fraction (<53 µm) was higher in the CWL condition than AWD condition which also indicated the importance of the chemical stabilization of OC (OC bound to minerals) in the CWL condition. The application of PM led to a significant increase (45%) in C sequestration potential than RS (37%). This could be attributed to C:N ratio and probable biochemical composition of amendments which resulted in lower decomposability of PM than RS, and also in line with the higher distribution of OC in mineral-bound OM than labile fraction. The application of higher organic amendments did not increase OC content, and declined C sequestration potential in soils as the microbial activity presumably did not match with the amendment amount. Overall, C sequestration potential was higher with 5 g PM kg−1 soil application under CWL-irrigated paddy soil. The findings indicated the need to pay more attention to the selection of the proper type and rate of organic amendments for higher C sequestration in soil under a specific irrigation system for sustainable agriculture.

Funder

Bangladesh Agricultural University Research System

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3