Evaluation of Indoor Thermal Comfort Conditions of Residential Traditional and Modern Buildings in a Warm-Humid Climate

Author:

Okafor Marcellinus U.ORCID,Awuzie Bankole OsitaORCID,Otasowie Kenneth,Marcel-Okafor Udochukwu,Aigbavboa ClintonORCID

Abstract

Achieving optimal levels of indoor thermal comfort in a warm, humid climate continues to pose a challenge to building occupants in such climatic regions. Buildings are either being retrofitted or designed differently to cater to thermal comfort. As a result, a variety of tactics have been deployed to guarantee optimal thermal comfort for occupants. Some scholars have highlighted the salient contributions of various types of construction materials toward the delivery of different housing types which perform differently under a diverse range of climatic conditions. A plethora of studies suggesting better indoor thermal comfort performance of traditional buildings as compared to contemporary dwellings due to various reasons have been observed. However, limited studies have sought to investigate this suggestion within warm, humid climatic regions. As such, this study engages in an evaluation of indoor thermal comfort qualities of traditional and modern buildings during the dry season with the goal of developing design guidelines for a thermally pleasant environment in a town, Okigwe, which is situated in a warm, humid climatic region in Southeastern Nigeria. Data were collected utilizing a field measurement technique. Throughout the survey period, variables of the indoor environment such as relative humidity and air temperature were recorded concurrently in nine selected buildings, two traditional and seven modern buildings. The fluctuations and differences in relative humidity and air temperature between the two building types were investigated using Z-test statistical techniques. The study’s results revealed that the contemporary structures’ indoor air temperature (29.4 °C) was 0.6 °C higher than traditional buildings’ indoor air temperature (28.8 °C). Therefore, the study recommends that architects and planners should make concerted efforts to integrate methods of passive design into the provision of a comfortable indoor thermal environment rather than relying solely on active design strategies, which whilst lacking in traditional buildings, nonetheless did not prevent such buildings from recording lower air temperature readings compared to modern buildings.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3