Abstract
In this study, the impacts of different proportions of tension reinforcement and waste lathe scraps on the failure and bending behavior of reinforced concrete beams (RCBs) are clearly detected considering empirical tests. Firstly, material strength and consistency test and then ½ scaled beam test have been carried out. For this purpose, a total of 12 specimens were produced in the laboratory and then tested to examine the failure mechanism under flexure. Two variables have been selected in creating text matrix. These are the longitudinal tension reinforcement ratio in beams (three different level) and volumetric ratio of waste lathe scraps (four different level: 0%, 1%, 2% and 3%). The produced simply supported beams were subjected to a two-point bending test. To prevent shear failure, sufficient stirrups have been used. Thus, a change in the bending behavior was observed during each test. With the addition of 1%, 2% and 3% waste lathe scraps, compressive strength escalated by 11.2%, 21.7% and 32.5%, respectively, compared to concrete without waste. According to slump test results, as the waste lathe scraps proportion in the concrete mixture is increased, the concrete consistency diminishes. Apart from the material tests, the following results were obtained from the tests performed on the beams. It is detected that with the addition of lathe waste, the mechanical features of beams improved. It is observed that different proportions of tension reinforcement and waste lathe scraps had different failure and bending impacts on the RCBs. While there was no significant change in stiffness and strength, ductility increased considerably with the addition of lathe waste.
Funder
Ministry of Science and Higher Education of the Russian Federation
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献