Error-Tracking Iterative Learning Control for the Constrained Flexible-Joint Manipulator with Initial Errors

Author:

Shi HuihuiORCID,Chen Qiang

Abstract

The use of manipulators can improve sustainable energy utilization efficiency and increase sustainable manufacturing practices for solar tracking systems and manufactures, and thus it is significant to guarantee a high tracking accuracy for manipulators. In this paper, an error-tracking adaptive iterative learning control (AILC) method is proposed for a constrained flexible-joint manipulator (FJM) with initial errors. Due to the existence of the repeated positioning drift, the accuracy of the actual manipulator and the sustainable energy utilization efficiency are affected, which motivates the error-tracking approach proposed in this paper to deal with the repeat positioning problem. The desired error trajectory is constructed, such that the tracking error can follow the desired error trajectory without arbitrary initial values and iteration-varying tasks. Then, the system uncertainties are approximated by the capability of fuzzy logic systems (FLSs), and the combined adaptive laws are designed to update the weight and the approximating error of FLSs. Considering the safety operation of the flexible-joint manipulator, both input and output constraints are considered, a quadratic-fractional barrier Lyapunov function (QFBLF) is constructed, such that the system output is always within the constrained region. Therefore, the proposed method can guarantee the output tracking accuracy of manipulators under arbitrary initial values and iteration-varying tasks and keep the system output within the constraints to improve the transient performance, such that the energy utilization and accessory manufacturing efficiency can be improved. Through the Lyapunov synthesis, it is proved that the tracking error can converge to zero as the number of iterations goes to infinity. Finally, comparative simulations are carried out to verify the effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3