Influence of Basalt Fiber on Mechanical Properties and Microstructure of Rubber Concrete

Author:

Wang Xiao,Shao Jinggan,Wang Junchao,Ma Minghao,Zhang Bing

Abstract

The utilization of waste rubber in concrete will reduce pollution and improve the efficiency of resource utilization. The effects of rubber particles and basalt fibers on the compressive strength and splitting tensile strength of concrete were investigated. In addition, the influence of basalt fibers on the mechanical properties and micropore structure of rubber concrete (RC) were analyzed using scanning electron microscopy (SEM) and X-ray computed tomography (CT). The distribution of rubber particles in concrete was also studied. The results indicate that the effects of basalts fibers on the mechanical properties of rubber concrete were significant. The rubber particles were evenly distributed in the concrete. Compared with normal concrete (NC), rubber concrete with 10% rubber particles had lower compressive strength and splitting tensile strength. Compared with rubber concrete, basalt fiber rubber concrete (BFRC) with 2% basalt fibers had no obvious effect on the compressive strength, while significantly improving the splitting tensile strength, refining the pores of rubber concrete, and reducing the porosity of the matrix. The effects of basalt fiber on the properties and pore distribution of RC should be considered in future applications.

Funder

Henan Provincial Department of Transportation Technology Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference20 articles.

1. Effect of Polymers on Behavior of Ultra-High-Strength Concrete

2. Properties of Rubberized Concrete Prepared from Different Cement Types;Lamiaa;Recycling,2022

3. Mechanical Properties of Concrete with Ground Waste Tire Rubber

4. Study on Mechanical Properties and Fracture Toughness of Porous Cement Concrete with Polymer Rubber Framework;Qi,2020

5. Experimental study on compressive strength of waste rubber concrete;Xiong;Concrete,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3