Elastic Hop Count Trickle Timer Algorithm in Internet of Things

Author:

Masadeh RajaORCID,AlSaaidah BayanORCID,Masadeh Esraa,Al-Hadidi Moh’d RasoulORCID,Almomani OmarORCID

Abstract

The Internet of Things (IoT) is a technology that allows machines to communicate with each other without the need for human interaction. Usually, IoT devices are connected via a network. A wide range of network technologies are required to make the IoT concept operate successfully; as a result, protocols at various network layers are used. One of the most extensively used network layer routing protocols is the Routing Protocol for Low Power and Lossy Networks (RPL). One of the primary components of RPL is the trickle timer method. The trickle algorithm directly impacts the time it takes for control messages to arrive. It has a listen-only period, which causes load imbalance and delays for nodes in the trickle algorithm. By making the trickle timer method run dynamically based on hop count, this research proposed a novel way of dealing with the difficulties of the traditional algorithm, which is called the Elastic Hop Count Trickle Timer Algorithm. Simulation experiments have been implemented using the Contiki Cooja 3.0 simulator to study the performance of RPL employing the dynamic trickle timer approach. Simulation results proved that the proposed algorithm outperforms the results of the traditional trickle algorithm, dynamic algorithm, and e-trickle algorithm in terms of consumed power, convergence time, and packet delivery ratio.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference24 articles.

1. Internet of Things: Smart Things

2. The Internet of Things: A Survey;Li,2015

3. The Internet of Things: A survey

4. Task scheduling based on modified grey wolf optimizer in cloud computing environment;Alzaqebah;Proceedings of the 2019 2nd International Conference on New Trends in Computing Sciences (ICTCS),2019

5. Security-aware CoAP application layer protocol for the internet of things using elliptic-curve cryptography;Albalas;Power (Mw),2018

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3