Free and Encapsulated Phosphate-Solubilizing Bacteria for the Enhanced Dissolution of Swine Wastewater-Derived Struvite—An Attractive Approach for Green Phosphorus Fertilizer

Author:

Jokkaew Suphatsorn,Jantharadej Krittayapong,Pokhum Chonlada,Chawengkijwanich Chamorn,Suwannasilp Benjaporn BoonchayaanantORCID

Abstract

Struvite and hydroxyapatite are byproducts of phosphorus removal from wastewater that can be used as phosphate fertilizers. Due to their low water solubility, especially in alkaline soils, their use is currently limited. The use of phosphate-solubilizing bacteria to enhance the dissolution of struvite and hydroxyapatite could be an attractive solution for expanding their use, but literature reports on this are limited. In this study, Arthrobacter sp. (TBRC 5201), Azotobacter vinelandii (TBRC 7231), and Bacillus megaterium (TBRC 1396) were evaluated for their ability to dissolve struvite and hydroxyapatite on agar media with struvite or hydroxyapatite as the sole source of phosphorus. Only B. megaterium (TBRC 1396) was able to use struvite and hydroxyapatite for growth. After 14 d of incubation in liquid medium, B. megaterium (TBRC 1396) dissolved phosphorus from struvite up to 835.45 ± 11.76 mg P/l compared with 196.08 ± 3.92 mg P/l in a control without cells, whereas the dissolution of hydroxyapatite by B. megaterium was minimal. B. megaterium (TBRC 1396) was also capable of dissolving phosphorus from swine wastewater-derived struvite. Both free cells and alginate-encapsulated cells of B. megaterium (TBRC 1396) were able to rapidly dissolve phosphorus from swine wastewater-derived struvite, resulting in soluble phosphorus concentrations that reached 400 mg P/l within 2 days, compared with those without cells that required 12 days. In conclusion, the application of struvite with phosphate-solubilizing bacteria is a promising tool for green sustainable agriculture.

Funder

National Nanotechnology Center

Thailand Graduate Institute of Science and Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3