Modeling of Inhalation Health Risk of Volatile Organic Compounds in the Vicinity of Maptaphut Petroleum and Petrochemical Industrial Estate, Thailand

Author:

Malakan WissawaORCID,Thepanondh Sarawut,Kondo Akira

Abstract

The purpose of this research was to explicate a human health risk assessment that can be employed with inhalation risk estimates to provide a screening level of risks. Model input parameters provide reasonable values with the site- and compound-specific values relied on by the Human Health Risk Assessment Protocol (HHRAP). This method uses a generic risk assessment, consisting of air dispersion and deposition modeling followed by risk modeling. An intensive evaluation was conducted in the surrounding area of the largest petroleum and petrochemical estate in Thailand, the Maptaphut industrial area, where a large volume of VOCs was emitted, with an increasing negative health impact on the local population. The potential inhalation health risk assessment showed that the lifetime cancer risk in all residential areas is higher than the health benchmarks. The highest cancer risk was 7.82 × 10−2 in children and 3.91 × 10−1 in adults. The inhalation effects are based on the specific emission rates, the united concentrations and deposition fluxes, and the emission phase. The results revealed that four VOCs (benzene, 1,3-butadiene, vinyl chloride, and 1,2-dichloroethane) should be given priority when controlling for sustainable health risk management through the comprehensive analysis of the integrated analysis of air dispersion and health risk mathematical models.

Funder

National Research Council of Thailand

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference40 articles.

1. PBT Profiler. Office of Pollution Prevention and Toxics http://www.pbtprofiler.net/

2. Waste Management Accountability: Risk, Reliability, and Resilience

3. Environmental transport and exposure pathways of substances emitted from incineration facilities;National Research Council,2000

4. Transport, Accumulation and Transformation Processes

5. Multipathway Screening Factors for Assessing Risks from Ingestion Exposures to Air Pollutants

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3