Antifungal and Antiaflatoxigenic Activities of Different Plant Extracts against Aspergillus flavus

Author:

Behiry Said I.ORCID,Hamad Najwa A.,Alotibi Fatimah O.,Al-Askar Abdulaziz A.,Arishi Amr A.,Kenawy Ahmed M.,Elsamra Ibrahim A.,Youssef Nesrine H.,Elsharkawy Mohsen MohamedORCID,Abdelkhalek AhmedORCID,Heflish Ahmed A.

Abstract

In the current study, four organic solvents, including ethanol, methanol, acetone, and diethyl ether, were used to extract turmeric, wheat bran, and taro peel. The efficiency of three different concentrations of each solvent was assessed for their antifungal and anti-mycotoxin production against Aspergillus flavus. The results indicated that 75% ethanolic and 25% methanolic extracts of taro peels and turmeric were active against fungus growth, which showed the smallest fungal dry weight ratios of 1.61 and 2.82, respectively. Furthermore, the 25% ethanolic extract of turmeric showed the best result (90.78%) in inhibiting aflatoxin B1 production. After 30 days of grain storage, aflatoxin B1 (AFB1) production was effectively inhibited, and the average inhibition ratio ranged between 4.46% and 69.01%. Simultaneously, the Topsin fungicide resulted in an inhibition ratio of 143.92%. Taro extract (25% acetone) produced the highest total phenolic content (61.28 mg GAE/g dry extract wt.) and showed an antioxidant capacity of 7.45 μg/mL, followed by turmeric 25% ethanol (49.82 mg GAE/g), which revealed the highest antioxidant capacity (74.16 μg/mL). RT-qPCR analysis indicated that the expression of aflD, aflP, and aflQ (structural genes) and aflR and aflS (regulatory genes) was down-regulated significantly compared to both untreated and Topsin-treated maize grains. Finally, the results showed that all three plant extracts could be used as promising source materials for potential products to control aflatoxin formation, thus creating a safer method for grain storage in the environment than the currently used protective method.

Funder

King Saud University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3