Survival Analysis for Asphalt Pavement Performance and Assessment of Various Factors Affecting Fatigue Cracking Based on LTPP Data

Author:

Hatoum Ali A.,Khatib Jamal M.ORCID,Barraj FirasORCID,Elkordi AdelORCID

Abstract

Pavement performance is the ability of pavement to remain in an acceptable condition to serve the intended users over a period of time. There are several principal, combined factors that affect flexible pavement performance such as environmental conditions, pavement materials, and traffic loads. Vehicle overloading is considered one of the most significant causes of accelerating flexible pavement deterioration, reducing the pavement’s design life, and affecting the overall sustainability of the pavement system. Therefore, researchers are continuously examining pavement systems with a view to finding the most suitable solutions for sustainable development in road construction systems in order to reduce both costs and pollution. In this study, we present a framework to conduct nonparametric and parametric survival analysis for asphalt pavement test sections, to assess the influence of using reclaimed asphalt pavement (RAP) on fatigue service life, to indicate the most significant subset of risk factors (covariates), and to study the effect of overweight axles on flexible pavement performance. All the data concerned were extracted from the long-term pavement performance (LTPP) program. The Kaplan–Meier (KM) survival probability curves of multiple pavement distresses were developed to compare the failure probability for various distresses and to determine the median survival time for each distress. The fatigue survival curves for the test sections using RAP and virgin materials were developed separately and the equality of the two survival curves was tested and affirmed. Several parametric survival analyses were conducted to select the most significant subset of covariates. For fatigue cracking and, after dropping the insignificant predictors, a model was developed to show the quantitative relationship between fatigue failure time and potentially influential factors. The analysis indicated that the increase in the percentage of overloaded axles from 0% to 20% can reduce the fatigue survival life of flexible pavement by up to 55%. In the absence of overweight axles, a one-inch increase in asphalt layer thickness can extend the fatigue service life by about half a year. However, in the presence of 20% of overweight axles, a one-inch increase in thickness can extend the fatigue service life by only 0.22 years. Therefore, additional virgin materials and resources are needed to maintain traffic conditions in the road network and to compensate for the reduction in fatigue service life. Moreover, the effect of the increase in overweight axles from 0% to 15% on reducing the fatigue survival life is found to be similar to the effect of increasing the AADTT tenfold. Therefore, the sustainability of pavement is directly affected by the fatigue survival life.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference54 articles.

1. Models for Predicting Pavement Deterioration;George;Transp. Res. Rec.,1989

2. Road Deterioration and Maintenance Effects: Models for Planning and Management;Paterson,1987

3. Development of Pavement Performance Models by Combining Experimental and Field Data

4. Transportation Infrastructure Performance Modeling through Seemingly Unrelated Regression Systems

5. Pavement performance modelling with an auto-regression approach

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3