Time-Dependent Deformation and Long-Term Strength of Carbonaceous Mudstone under Dry and Wet Cycles

Author:

Li Sheng-Nan,Peng ZhuORCID,Huang Zhong-Hua,Liang Qiao,Liu Jie,Zhou Wen-Quan

Abstract

Clarifying the time-dependent strength deterioration characteristics of carbonaceous mudstone under dry and wet cycles is of great significance to the design of expressway cut slopes. In this work, we conducted triaxial compression creep tests on carbonaceous mudstone specimens that had undergone different numbers of dry and wet cycles to investigate their creep properties. A function was established between the steady-state viscoplastic creep rate and axial compression. The threshold stress of the steady-state viscoplastic creep rate was assumed as the long-term strength, and the long-term strength deterioration law of carbonaceous mudstone under dry and wet cycles was studied. The results showed that the transient strain, viscoelastic creep, and viscoplastic creep of carbonaceous mudstone increased with the number of dry and wet cycles, and the creep failure stress and transient elasticity modulus decreased. Based on the steady-state viscoplastic creep rate method, the long-term strength of carbonaceous mudstone after n (n = 0, 3, 6, 9) dry and wet cycles was found to be 74.25%, 64.88%, 57.56%, and 53.16% of its uniaxial compression strength, respectively. Compared with the isochronous curve method and the transition creep method, the steady-state viscoplastic creep rate method can more accurately determine the long-term rock strength. The long-term strength of carbonaceous mudstone under dry and wet cycles decays exponentially, and the long-term strength decay rate during the first three dry and wet cycles is about 215 times the average decay rate.

Funder

National Natural Science Foundation of China

Hunan Provincial Natural Science Foundation Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3