Effects of Influence Parameters on Freezing Wall Temperature Field in Subway Tunnel

Author:

Zhao Yanxi,Wei Youxin,Jiang Jingshan,Jin Hua

Abstract

In order to study the influence of different factors on the temperature field of the freezing wall of connecting passage, and to evaluate the effect of different influencing factors, four groups of analyses were carried out through three-dimensional finite element software, including the influence of brine temperature, the influence of freezing pipe diameter, the influence of freezing pipe spacing, and the influence of soil water content. The analysis shows that the finite element method based on the thermodynamics theory can better simulate the freezing temperature field and formation law of the freezing wall of each section. Among the influencing factors, the brine temperature and the freezing pipe spacing have the greatest influence on the temperature field of the freezing wall. The thickness of the freezing wall increases linearly with the increase in the freezing time. At the same time, the thickness of the freezing wall increases with the increase in the diameter of the freezing tube and the decrease in the spacing between the freezing tubes. With the decrease in brine temperature and water content, the difference of freezing wall thickness at different levels becomes larger and larger with the increase in freezing time. The influence of various factors on the freezing wall is in the order of brine temperature, freezing tube spacing, and freezing tube diameter. At present, the saltwater temperature in the freezing project of the metro shield tunnel is generally controlled at −28~−30 °C. Generally, from the perspective of actual engineering, it is better to control the spacing of freezing pipes at 1.0~1.3 m, and the diameter of the freezing pipe of the connecting channel is generally more than 89 mm. By comparing the numerical simulation value with monitoring data, the numerical calculation result is consistent with the monitoring temperature change rule.

Funder

Nanjing Institute of Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference29 articles.

1. Temperature, Moisture, Stress and Interaction of Frozen Soil;An,1990

2. Research method and application analysis of frozen soil temperature status;Li;Glacier Frozen Soil,2004

3. Status and prospect of artificial ground freezing technology for urban underground engineering;Cheng;J. Huainan Inst. Technol.,2000

4. Permafrost Mechanics;Tritovic,1985

5. Numerical solution of phase-change problems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3