Study on Phosphorus Removal Pathway in Constructed Wetlands with Thermally Modified Sepiolite

Author:

Gao Pan,Zhang Chao

Abstract

Constructed wetlands, as natural sewage treatment ecosystems, have been widely used in the fields of rural domestic sewage and sewage plant tailwater treatment. However, the synchronous removal of phosphorus in most constructed wetlands is not ideal. This study aimed to prepare thermally modified sepiolites with high phosphorus adsorption capacities and design a constructed wetland based on them. Thermal modification was adopted to enhance the adsorption capacity of sepiolite based on its high specific surface area and ion exchange capacity. The physicochemical properties and adsorption performance of thermally modified sepiolite were studied. The results showed that the specific surface area and adsorption capacity of thermally modified sepiolite were higher than those of natural sepiolite, reaching 19.494 mg·g−1. The concentration of effluent and the removal of constructed wetlands based on thermally modified sepiolite was 0.07 mg·g−1 and 91.05%. An analysis of the phosphorus forms in constructed wetlands proved that the main phosphorus removal pathway is the adsorption of substrate, and the form of phosphorus was mainly Ca/Mg-P and Fe/Al-P.

Funder

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3