Study on Creep Characteristics of Water Saturated Phyllite

Author:

Wu Yabin,Hu JianhuaORCID,Wen Guanping

Abstract

Phyllite is affected by its own bedding, stress environment and water-saturated conditions. There are great differences in its deformation and failure in engineering, and its creep characteristics are an important basis for evaluating the long-term stability of phyllite engineering. Therefore, this study carried out creep tests of water-saturated phyllite under different bedding angles and confining pressures, studied the coupling effect of factors that affect the creep characteristics of phyllite, and investigated and analyzed the deformation characteristics of a phyllite roadway support on site to provide basic support for phyllite roadway mine disaster control and collaborative mining research. The results showed the following: (1) When the bedding dip angle was 30~60°, under the control of the bedding, the sliding deformation along the bedding suddenly increased under the low-stress condition and the specimen did not undergo structural damage. It could continuously bear multi-level stress and generated creep deformation. In this case, a phyllite roadway should adopt the support method of combining flexibility and rigidity. (2) In the process of multi-stage stress loading, the creep instantaneous stress was directly proportional to the initial stress. When the stress was loaded to 50% of the failure strength, the instantaneous stress tended to be stable and maintained a linear, slightly increasing relationship with the stress. When the bedding angle was 30~60°, the creep deformation accounted for more than 50% of the total deformation. The bedding angles of 0° and 90° were dominated by the instantaneous strain during the stress loading process. For the flexible support of the roadway, the deformation caused by disturbance stress should be fully considered. (3) The uniaxial creep specimen mainly displayed compression shear tensile failure, with a small number of parallel cracks along the main fracture surface. The triaxial creep fracture mode changed to single shear failure. The confining pressure showed greater inhibition of the creep of the specimen with a bedding inclination of 0° and 90°. The strength design of the rigid support should refer to the original rock stress value of the roadway. The creep deformation and failure of the specimen with a bedding inclination of 30~60° were mainly controlled by the bedding. The included angle between the bedding dip angle and the maximum principal stress should be kept within 30~60° as far as possible in the roadway layout.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3