Structural Evolution and Community Detection of China Rail Transit Route Network

Author:

Ding RuiORCID,Fu Jun,Du Yiming,Du Linyu,Zhou Tao,Zhang Yilin,Shen Siwei,Zhu Yuqi,Chen Shihui

Abstract

How to improve the partial or overall performance of rail transit route network, strengthen the connection between different rail network stations, and form corresponding communities to resist the impact of sudden or long-term external factors has earned a lot of attention recently. However, the corresponding research studies are mostly based on the rail network structure, and the analysis and exploration of the community formed by the stations and its robustness are not enough. In this article, the evolution of the China rail transit route network (CRTRN) from 2009 to 2022 is taken as the research object, and its complex network characteristics, BGLL model-based community division, and multi disturbance strategies for network robustness are analyzed in depth to better understand and optimize the rail network structure to further effectively improve the efficiency of the public transport system. It is found that CRTRN is gradually expanding following the southwest direction (with the migration distance of nearly 200 km), the distribution of routes is more balanced, and the number of network communities is steadily decreasing (it dropped from 30 communities in 2009 to 25 in 2019), making various regions become closely connected. However, it can also be found that during the COVID-19 pandemic, the CRTRN is strongly affected, and the network structure becomes relatively loose and chaotic (the number of communities became 30). To protect the railway networks, the CRTRN system should pay more attention to stations with high node degree values; if they get disturbed, more areas will be affected. The corresponding research conclusions can provide some theoretical and practical support for the construction of the rail transit network in China.

Funder

National Natural Science Foundation of China

Guizhou Provincial Science and Technology Projects

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3