Evaluating the Evolution of Soil Erosion under Catchment Farmland Abandonment Using Lakeshore Sediment

Author:

Wang XiaoleiORCID,Zhao Zihan,Han Ximou,Liu Jinliang,Kitch Jessica,Liu Yongmei,Yang Hao

Abstract

Discriminating the potential sources contributing to lacustrine sediment is helpful for decision-making for catchment soils and lake management strategies within lake-catchment systems. Using a sediment fingerprinting approach from the multivariate mixing model, the spatiotemporal sources of geology and land use were identified in a small agricultural catchment in southwest China. Results showed that sediment accumulation rates (SARs) were estimated to range from 0.002 to 0.065 g cm−2 a−1 (mean 0.015 ± 0.016 g cm−2 a−1), which has a positive correlation with instrumental Indian Summer Monsoon (ISM) precipitation. Time-integrated sources were divided into four zones in combination with the changes in SARs, which were qualitatively and quantitively interpreted by particle size, and precipitation, and historical land use polies over the past ~160 years. Spatially, Quaternary granite (QG) in geology and channel bank (CB) in land use were the dominant contributors to the lakeshore sediment, respectively. Two relatively higher contributions of abandoned land (AL) to lakeshore sediment were found during the periods of 1930s–1950s and post-1990s, which originated from the dual impacts of topographical factors of slope gradient and elevation, and socioeconomic factors of the gap of farmer’s expenditure to income. The results illustrate that restricting the farmland to be abandoned would be useful for reducing the soil erosion within the lake-catchment system.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3