The Effects of Osmosis and Thermo-Priming on Salinity Stress Tolerance in Vigna radiata L.

Author:

Ali Saqib,Ullah Sami,Khan Muhammad NaumanORCID,Khan Wisal MuhammadORCID,Razak Sarah Abdul,Wahab Sana,Hafeez AqsaORCID,Khan Bangash Sajid AliORCID,Poczai PeterORCID

Abstract

A plant’s response to osmotic stress is a complex phenomenon that causes many abnormal symptoms due to limitations in growth and development or even the loss of yield. The current research aimed to analyze the agronomical, physiological, and biochemical mechanisms accompanying the acquisition of salt resistance in the Vigna radiata L. variety ‘Ramzan’ using seed osmo- and thermopriming in the presence of PEG-4000 and 4 °C under induced salinity stresses of 100 and 150 mM NaCl. Seeds were collected from CCRI, Nowshera, and sowing was undertaken in triplicate at the Department of Botany, Peshawar University, during the 2018–2019 growing season. Rhizospheric soil pH (6.0), E.C (2.41 ds/m), field capacity, and moisture content level were estimated in the present study. We observed from the estimated results that the agronomic characteristics, i.e., shoot fresh weight and shoot dry weight in T9 (4oC + 150 mM NaCl), root fresh weight and root dry weight in T4 (PEG + 100 mM NaCl), shoot moisture content in T5 (PEG + 100 mM NaCl), and root moisture content in T6 (PEG + 150 mM NaCl) were the highest, followed by the lowest in T1 (both shoot and root fresh weights) and T2 (shoot and root dry weights). Similarly, the shoot moisture content was the maximum in T5 and the minimum in T6, and root moisture was the highest in T6. We observed from the estimated results that agronomical parameters including dry masses (T4, T6, T4), leaf area index, germination index, leaf area, total biomass, seed vigor index under treatment T9, and relative water content and water use efficiency during T5 and T6 were the highest. Plant physiological traits such as proline, SOD enhanced by T1, carotenoids in treatment T2, and chlorophyll and protein levels were the highest under treatment T4, whereas sugar and POD were highest under treatments T7 and T8. The principal component analysis enclosed 63.75% of the total variation among all biological components. These estimated results confirmed the positive resistance by Vigna radiata during osmopriming (PEG) and thermopriming (4 °C) on most of the features with great tolerance under a low-saline treatment such as T4 (PEG), T5 (PEG + 100 mM NaCl), T7 (4 °C), and T8 (4 °C + 100 mM NaCl), while it was susceptible in the case of T6 (PEG + 150 mM NaCl) and T9 (4 °C + 150 mM NaCl) to high salt application. We found that the constraining impact of several priming techniques improved low salinity, which was regarded as economically inexpensive and initiated numerous metabolic processes in plants, hence decreasing germination time. The current study will have major applications for combatting the salinity problem induced by climate change in Pakistan.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3