Modified Nano-Fe2O3-Paraffin Wax for Efficient Photovoltaic/Thermal System in Severe Weather Conditions

Author:

Chaichan Miqdam T.ORCID,Mahdi Maytham T.,Kazem Hussein A.,Al-Waeli Ali H. A.,Fayad Mohammed A.,Al-Amiery Ahmed A.ORCID,Isahak Wan Nor Roslam WanORCID,Kadhum Abdul Amir H.,Takriff Mohd S.

Abstract

The development of modern photovoltaic thermal systems (PV/T) is one of the most important steps in the application of using solar energy to produce both electricity and heat. Studies have shown that a system consisting of a heat-collecting tank the is most efficient system, in which the phase change materials (PCMs) are mixed with nanoparticles inside the system that are cooled by a cooling fluid (preferably a nanofluid). The PCMs have a high capacity to store energy in the form of latent heat. Nanoparticles are added to PCMs to treat and improve the low thermal conductivity of these materials. In this experimental study, nano-iron oxide III (Fe2O3) was added to paraffin wax in multiple mass fractions to evaluate the thermophysical changes that can be occur on the wax properties. Four samples of paraffin–nano-Fe2O3 were prepared with mass fractions of 0.5%, 1%, 2% and 3%, and their thermophysical properties were compared with pure paraffin (without nano additives). The results from this study showed that adding nano-Fe2O3 at any mass fraction increases the viscosity and density of the product. Thermal conductivity is improved by adding nano-Fe2O3 to paraffin wax by 10.04%, 57.14%, 76.19%, and 78.57% when adding mass fractions of 0.5%, 1%, 2%, and 3%, respectively. Stability tests showed that the prepared samples have excellent thermal stability (especially for 0.5% and 1% added nano-Fe2O3) to acceptable level of stability when adding 3% of nano-Fe2O3. The nano-Fe2O3 paraffin PV/T system was tested outdoors to ensure its ability to operate in the harshest weather conditions of Baghdad city. The current experimental results indicated clear evidence of the success of the examined nano-PCM.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3