Increasing the Sustainability of Manufacturing Processes in Plastic Injection: Recovering Out-Of-Service Robots to Eliminate Manual Assembly Operations

Author:

Costa Rúben,Sousa Vitor,Silva Francisco J. G.ORCID,Campilho RaulORCID,Sá José C.ORCID,Pinto ArnaldoORCID,Pereira João

Abstract

In the 20th century, there was a burst concerning the development of the automobile industry, which has become an essential asset for society. With its evolution, this industry created a foundation that based its competitiveness on satisfying people’s needs with the highest possible quality and always respecting the delivery deadlines. With the growth in demand, the improvement of certain processes was needed to achieve the desired production goals, accomplished through automation and robotics, as production and assembly lines increasingly used fully automated processes. In plastic injection lines, production is constant and carried out quickly, so it is desirable to perform component assembly steps that immediately support the output of the injection mould parts. This work consists of adapting an obsolete robotic cell to be implemented in one of the production lines to insert components into the injected parts, replacing labour work. Through a mechanical project and an automation design, the equipment was concluded and is currently in production, fulfilling the necessary requirements and improving the process’ cycle time. This proves that it is possible to recover old equipment, which is able to improve current tasks and common needs in modern industry, increasing the economic sustainability of the processes and saving resources.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3