Remaining Useful Life Prediction of Wind Turbine Gearbox Bearings with Limited Samples Based on Prior Knowledge and PI-LSTM

Author:

Wang Zheng,Gao Peng,Chu Xuening

Abstract

Accurately predicting the remaining useful life of wind turbine gearbox bearing online is essential for ensuring the safe operation of the whole machine in the long run. In recent years, quite a few data-driven approaches have been proposed that use the sensor-collected data to deal with this problem, achieving good results. However, their effects are heavily dependent on the massive degradation data due to the nature of data-driven methods. In practice, the complete data collection is expensive and time-consuming, especially for newly built or small-scale wind farms, which brings the problem of using limited data into sharp focus. To this end, in this paper, a novel idea of first using the prior knowledge of an empirical model for data augmentation based on the raw limited samples and then using the deep neural network to learn from the augmented data is proposed. This helps the neural network to safely approach the degradation characteristics, avoiding overfitting. In addition, a new neural network, namely, pre-interaction long short-term memory (PI-LSTM), is designed, which is able to better capture the sequential features of time-series samples, especially in the periods in which the continuous features are interrupted. Finally, a fine-tuning process is conducted using the limited real data for eliminating the introduced knowledge bias. Through a case study based on real sensor data, both the idea and the PI-LSTM are proved to be effective and superior to the state-of-art.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference47 articles.

1. A survey of modeling for prognosis and health management of industrial equipment

2. Critical Wind Turbine Components Prognostics: A Comprehensive Review

3. Physics based methodology for wind turbine failure detection, diagnostics & prognostics;Breteler;Proceedings of the European Wind Energy Association Annual Conference and Exhibition,2015

4. STOCHASTIC PROGNOSTICS FOR ROLLING ELEMENT BEARINGS

5. Physically based diagnosis and prognosis of cracked rotor shafts;Oppenheimer;Proceedings of the SPIE-The International Society for Optical Engineering,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3