Simulating the Impact of the Sustained Melting Arctic on the Global Container Sea–Rail Intermodal Shipping

Author:

Sun ZhuoORCID,Zhang Ran,Zhu Tao

Abstract

Global warming trends and the rapid reduction of summer Arctic sea ice extent have increased the feasibility of transarctic transport. How the process of glacier melting affects the existing containerized sea–rail shipping network and container flow assignment has become a challenging economic and policy issue. This paper first examines the meteorological influences on glacier melting and the assignment of container flow over the existing sea–rail network. Then, a three-layer simulation framework is constructed, with the upper layer simulating glacier melting based on the raster grid, the middle layer combining a grid and topology analysis to simulate the evolution of the global sea–rail network and the lower layer establishing a concave cost network flow model to simulate the container flow assignment. Finally, we use MicroCity to achieve the dynamic optimization and simulation of global container flow assignment, solving the large-scale sea–rail shipping network traffic assignment problem. The simulation results show that the proposed model and solution algorithm are feasible and effective, revealing the variation of container flow assignment in the global sea–rail shipping network under different Arctic ice melting scenarios. For instance, in the summer of 2050, the Arctic routes will share the global container flows, resulting in a significant reduction of container flows in the Malacca Strait, Suez Canal and Panama Canal.

Funder

National Natural Science Foundation of China

Humanity and Social Science Youth Foundation of the Ministry of Education

International Association of Maritime Universities

Natural Science Foundation of Liaoning Province

Dalian Science and Technology Innovation Fund

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3