Effects of Forest Vegetation Restoration on Soil Organic Carbon and Its Labile Fractions in the Danxia Landform of China

Author:

Xiao Ye,Huang Zhigang,Ling Yulin,Cai Shenwen,Zeng Boping,Liang Sheng,Wang Xiao

Abstract

The Danxia landform is a unique red bed landform in China. The effects of vegetation restoration on soil organic carbon (SOC) components are still poorly understood in the Danxia landform region of southwest China. In this study, soil samples were collected from selected five different vegetation restoration types (shrub (SH), mixed conifer–broadleaf forest (MCBF), evergreen broad-leaved forest (EBF), Chinese fir forest (CFF), and bamboo forest (BF)) at 0–30 cm depth to discuss the concentrations and stocks of SOC and its labile organic carbon (LOC) fractions ((dissolved organic C (DOC), microbial biomass C (MBC), and easily oxidized organic C (EOC)) and their relationship with soil physicochemical properties and enzyme activities. The results indicated that the contents of SOC and LOC fractions as well as SOC stocks declined with increasing soil depth in five vegetation restoration types. At 0–30 cm depth, BF and CFF showed higher the average concentrations and total stocks of SOC and EOC compared with SH, EBF, and MCBF. The highest average DOC content was in BF, but no significant differences was observed in the total DOC stocks among five vegetation restoration types. BF and EBF showed significantly greater average MBC concentrations and total MBC stocks than other vegetation restoration types. SOC and its LOC fractions were positively correlated with soil moisture and three enzyme activities in different degrees under the five vegetation restoration types and closely related with total nitrogen (TN) and total phosphorus (TP) except for TP of CFF and BF and negatively affected by pH (except for CFF and the DOC and MBC of MCBF) and BD. Generally, soil TN, TP, and invertase were found to be the main driver factors for soil carbon accumulation. However, the overall levels of SOC and its labile fractions indicate that BF had the strongest carbon storage capacity, followed by CFF and EBF. This study can provide a good reference for ecosystem management and the selection of appropriate restoration strategies in Danxia landform regions.

Funder

Guizhou Provincial Science and Technology Projects

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3