Synthesis of Novel MOF-5 Based BiCoO3 Photocatalyst for the Treatment of Textile Wastewater

Author:

Sarwar Bazla,Khan Asad,Fazal TahirORCID,Aslam MuhammadORCID,Qaisrani NaeemORCID,Ahmed AshfaqORCID

Abstract

Water pollution, having organic dyes, has lethal impacts on aquatic life and public health. To eliminate or degrade dyes, a metal-organic framework (MOF) based BiCoO3 semiconductor is considered a potential photocatalyst for the degradation of dyes. In this study, the MOF-5-based BiCoO3 (MOF-5/BiCoO3) composite was successfully synthesized using a one-pot hydrothermal process. Different analytical techniques were used to characterize MOF-5/BiCoO3 composite and pure MOF-5 samples. When compared to pure MOF-5, the experimental and characterization analysis showed that the MOF-5/BiCoO3 composite has better photocatalytic activity (99.6%) for the degradation of Congo-red (CR) dye due to the formation of heterostructure between MOF-5 and BiCoO3, which improve the separation of charge carriers. Meanwhile, the introduction of BiCoO3 with MOF-5 changes the surface morphology of MOF-5/BiCoO3 composite, increasing the surface area for CR adsorption and thus improving photocatalytic efficiency. Based on radical trapping experiments, the superoxide and hydroxyl radicals are dominant species in the CR degradation process. The reusability results demonstrate that MOF-5/BiCoO3 composite can be used effectively for up to five cycles, which makes the process more economical. Hence, MOF-5/BiCoO3 composite offers a promising approach to developing a highly effective, stable, efficient, economical, and sustainable photocatalyst for the dissociation of organic pollutants from wastewater streams.

Funder

Pak-US Science & Technology Cooperation Program under HEC-Pakistan, Phase –VI, entitled “A Sustainable Point-of-Use filtration Unit for Treating Pesticide Contaminated Ground water”

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3