Author:
Feng Zihao,Chen Jianjun,Huang Renjie,Yang Yanping,You Haotian,Han Xiaowen
Abstract
Vegetation phenology changes are able to reveal climate-change-associated ecosystem feedback mechanisms. In this study, Qinghai–Tibet Plateau (QTP) alpine vegetation phenological information was extracted from the normalised difference vegetation index of the MOD13Q1 product collected from 2001 to 2020 using TIMESAT3.3 and S-G filtering and threshold dynamics methods. An analysis of data from the start of growth (SOG) and end of growth (EOG) seasons using a Theil–Sen median slope trend and partial correlation analyses revealed spatial and temporal variations in vegetation phenology related to climate change and topography, including: (1) significant spatial variation, gradually increasing southeast-to-northwest SOG delays and northeast-to-southwest EOG delays, with significant variations across vegetation types; (2) significant altitude-associated variations in the meadow, steppe, and shrub alpine vegetation types with high-altitude boundaries of 2400 m, 2800 m, and 2600 m, respectively, with delayed and earlier SOG and EOG below and above each boundary, respectively; and (3) spatial variations in relationships between vegetation phenology changes and climatic factors, where SOG negatively and EOG positively correlated with temperature and precipitation. The mean temperature in the 30 days before SOG and mean total precipitation in the 30 days before EOG were significantly correlated with SOG and EOG timing both negatively and positively, respectively. These results provide guidance for the monitoring of the alpine vegetation phenology on the QTP.
Funder
the National Natural Science Youth Foundation of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献