Improving Road Safety during Nocturnal Hours by Characterizing Animal Poses Utilizing CNN-Based Analysis of Thermal Images

Author:

Mowen Derian,Munian YuvarajORCID,Alamaniotis Miltiadis

Abstract

Animal–vehicle collision is a common danger on highways, especially during nighttime driving. Its likelihood is affected not only by the low visibility during nighttime hours, but also by the unpredictability of animals’ actions when a vehicle is nearby. Extensive research has shown that the lack of visibility during nighttime hours can be addressed using thermal imaging. However, to our knowledge, little research has been undertaken on predicting animal action through an animal’s specific poses while a vehicle is moving. This paper proposes a new system that couples the use of a two-dimensional convolutional neural network (2D-CNN) and thermal image input, to determine the risk imposed by an animal in a specific pose to a passing automobile during nighttime hours. The proposed system was tested using a set of thermal images presenting real-life scenarios of animals in specific poses on the roadside and was found to classify animal poses accurately in 82% of cases. Overall, it provides a valuable basis for implementing an automotive tool to minimize animal–vehicle collisions during nighttime hours.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference34 articles.

1. Wildlife-Vehicle Collision Reduction Study: Report to Congress;Huijser,2017

2. Evaluation of an electrified mat as a white-tailed deer (Odocoileus virginianus) barrier

3. Oh, Deer!;Stein;U.S. News World Rep.,2003

4. Wildlife-vehicle collisions - Influencing factors, data collection and research methods

5. Thermography, thermography & its clinical applications;Barnes;Ann. N. Y. Acad. Sci.,1964

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3