CO2 Storage and Geothermal Extraction Technology for Deep Coal Mine

Author:

Wang Fangtian,Yan Jinghong

Abstract

This paper aims at reducing greenhouse gas emissions, which contributes to carbon neutrality, and, at the same time, preventing mine heat disasters and extracting highly mineralized (HM) mine water, so as to realize the synergy between CO2 storage (CS) and geothermal extraction and utilization (GEU) in a high temperature (HT) goaf. With this purpose, an innovative CS-GEU technology for HT and HM water in deep mine is proposed, based on the mechanism of water-rock-CO2 effect (WRCE) and the principle of GEU in the mine. This technology uses GEU to offset the costs of CO2 storage and refrigeration in HT mine. A general scheme for a synergistic system of CS and GEU in the goaf is designed. The feasibility of CS-GEU technology in the deep goaf is demonstrated from the views of CS and GEU in the goaf and the principles of a synergistic system. It is clarified that the CO2 migration-storage evolution and the multi-field coupling principle in the goaf are the key scientific issues in realizing the synergic operation of CS and GEU. It proposes the key techniques involved in this process: CO2 capture and CO2 transportation, layout and support of drill holes and high-pressure (HP) pipelines, and HP sealing in the goaf. The research results provide new ideas for CS and GEU of HT and HM mine water in deep mine.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference53 articles.

1. Development opportunities for coal industry under carbon neutrality target;Xie;J. China Coal Soc.,2021

2. Challenges and opportunities for the oil and gas industry from the Carbon Neutral Vision;Jin;Techno-Econ. Petrochem.,2021

3. China is carbon neutral: Leading global climate governance and green transformation;Zhang;Int. Econ. Rev.,2021

4. Interview on the unprecedented changes of energy geopolitics and national energy security

5. The technological path of coal revolution under carbon neutral target;Chen;J. China Coal Soc.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3