Smart Carbon Emission Scheduling for Electric Vehicles via Reinforcement Learning under Carbon Peak Target

Author:

Cao YongshengORCID,Wang Yongquan

Abstract

Electric vehicles (EVs) have become popular in daily life, which influences carbon dioxide emissions and reshapes the curves of community loads. It is crucial to study efficient carbon emission scheduling algorithms to lessen the influence of EVs’ charging demand on carbon dioxide emissions and reduce the carbon emission cost for EVs coming to the community. We study an electric vehicle (EV) carbon emission scheduling problem to shave the peak community load and reduce the carbon emission cost when we do not know future EV data. First, we investigate an offline carbon emission scheduling problem to minimize the carbon emission cost of the community by predicting future data with regard to incoming EVs. Then, we study the online carbon emission problem and propose an online carbon emission algorithm based on a heuristic rolling algorithm. Furthermore, we propose a reinforcement learning smart carbon emission algorithm (RLSCA) to achieve the dispatching plan of the charging carbon emission of EVs. Last but not least, simulation results show that our proposed algorithm can reduce the carbon emission cost by 21.26%, 16.60%, and 8.72% compared with three benchmark algorithms.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3