ZnO Nanostructures and Electrospun ZnO–Polymeric Hybrid Nanomaterials in Biomedical, Health, and Sustainability Applications

Author:

Ferrone EloisaORCID,Araneo RodolfoORCID,Notargiacomo Andrea,Pea Marialilia,Rinaldi AntonioORCID

Abstract

ZnO-based nanomaterials are a subject of increasing interest within current research, because of their multifunctional properties, such as piezoelectricity, semi-conductivity, ultraviolet absorption, optical transparency, and photoluminescence, as well as their low toxicity, biodegradability, low cost, and versatility in achieving diverse shapes. Among the numerous fields of application, the use of nanostructured ZnO is increasingly widespread also in the biomedical and healthcare sectors, thanks to its antiseptic and antibacterial properties, role as a promoter in tissue regeneration, selectivity for specific cell lines, and drug delivery function, as well as its electrochemical and optical properties, which make it a good candidate for biomedical applications. Because of its growing use, understanding the toxicity of ZnO nanomaterials and their interaction with biological systems is crucial for manufacturing relevant engineering materials. In the last few years, ZnO nanostructures were also used to functionalize polymer matrices to produce hybrid composite materials with new properties. Among the numerous manufacturing methods, electrospinning is becoming a mainstream technique for the production of scaffolds and mats made of polymeric and metal-oxide nanofibers. In this review, we focus on toxicological aspects and recent developments in the use of ZnO-based nanomaterials for biomedical, healthcare, and sustainability applications, either alone or loaded inside polymeric matrices to make electrospun composite nanomaterials. Bibliographic data were compared and analyzed with the aim of giving homogeneity to the results and highlighting reference trends useful for obtaining a fresh perspective about the toxicity of ZnO nanostructures and their underlying mechanisms for the materials and engineering community.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3