The Influence of Severe Plastic Deformation and Subsequent Annealing on the Microstructure and Hardness of a Cu–Cr–Zr Alloy

Author:

Kapoor Garima,Kvackaj Tibor,Heczel AnitaORCID,Bidulská JanaORCID,Kočiško Róbert,Fogarassy Zsolt,Simcak Dusan,Gubicza JenőORCID

Abstract

A Cu–1.1%Cr–0.04%Zr (wt.%) alloy was processed by severe plastic deformation (SPD) using the equal channel angular pressing (ECAP) technique at room temperature (RT). It was found that when the number of passes increased from one to four, the dislocation density significantly increased by 35% while the crystallite size decreased by 32%. Subsequent rolling at RT did not influence considerably the crystallite size and dislocation density. At the same time, cryorolling at liquid nitrogen temperature yielded a much higher dislocation density. All the samples contained Cr particles with an average size of 1 µm. Both the size and fraction of the Cr particles did not change during the increase in ECAP passes and the application of rolling after ECAP. The hardness of the severely deformed Cu alloy samples can be well correlated to the dislocation density using the Taylor equation. Heat treatment at 430 °C for 30 min in air caused a significant reduction in the dislocation density for all the deformed samples, while the hardness considerably increased. This apparent contradiction can be explained by the solute oxygen hardening, but the annihilation of mobile dislocations during annealing may also contribute to hardening.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3