Abstract
The liquid metal lyophobicity of a rough substrate was, in previous articles, found to be rather independent on the surface wettability. In this article, we scrutinize the impact of surface wettability of a structured (rough) surface on the liquid metal wettability and adhesion. As a model system, a structured diamond coating was synthesized and modified by air plasma. We show that surface wettability (surface free energy) does not play a prominent role for static contact angle measurements and for the liquid metal repelling properties of the diamond coating in droplet impact experiments. In contrast, roll off angles and repeated deposition experiments illustrate that the increased hydrophilicity impacts the long-term liquid metal repellency of our coating. Liquid metal adhered after around 50 deposition/removal cycles on the hydrophilic diamond coating, while no liquid metal adhesion was visible after 100 cycles on the hydrophobic diamond coating, illustrating the fundamental role for the adhesion of liquid metal. The effect of repeated deposition in conjunction with gentle applied force was employed for coating the liquid metal lyophobic (hydrophilic) diamond coating with a thin liquid metal layer. The observed effect may find application in flexible electronics and thermal management systems as a means to improve interfacing of the liquid metal with conductive non-metal coatings.
Funder
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献