Is Pseudohalide CN− a Real Halide? A General Symmetry Consideration

Author:

Qin Zhengbo1ORCID

Affiliation:

1. Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China

Abstract

Recently, in light of the significant attention devoted to pseudohalide CN− and cyano radical CN physico-chemical property studies and superhalide behavior exploration in CN−-ligated metal compounds, the photoelectron angular distribution nature of pseudohalide CN− has been directly demonstrated via the photoelectron velocity map imaging technique to be comparable to Cl−. For the halide Cl−, photoelectrons were observed at 266 nm (4.66 eV) to peak, perpendicular to the laser polarization associated with the detachment of p-orbital symmetry. For the analogous pseudohalide CN−, photoelectrons were present at a peak in laser polarization at 266 nm, which can be explained as detachment from mainly atomic s-like orbital symmetry. Although both are often regarded as having the same high electron affinity and similarly strong chemical bonding capabilities to stabilize complexes, their photoelectron angular distributions are distinctly different, which indicates their intrinsically different electronic–structure symmetry (HOMO nature). The approach based on symmetry consideration in this work could be utilized to explain the photoelectron angular distributions of pseudohalide and classic halide ligands via the advanced photoelectron velocity map imaging tool.

Funder

National Science Foundation of China

Hefei Comprehensive National Science Center

University Annual Scientific Research Plan of Anhui Province

Open Foundation of Key Laboratory of High Power Laser and Physics, Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3