A Proposal to the ‘12 vs. 32 Puzzle’

Author:

Li Qiang1ORCID,Feng Wei2,Wang Guo-Li34

Affiliation:

1. School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China

2. School of Electronic Engineering, Xidian University, Xi’an 710071, China

3. Department of Physics, Hebei University, Baoding 071002, China

4. Key Laboratory of High-Precision Computation and Application of Quantum Field Theory of Hebei Province, Baoding 071002, China

Abstract

We reconsider the semileptonic decays of B→D1(′)lν¯l. The previous theoretical calculations predict a significantly smaller rate for the semileptonic decay of B to D1′(Jl=12) compared with that to the D1(Jl=32), which is not consistent with the current experimental data. This conflict is known as the so-called ‘12 vs. 32 puzzle’. In this work, we propose a simple scheme to fix this problem, where we suppose the strong eigenstates D1(′) that do not coincide with the eigenstate of the weak interaction, since no experimental results show that the weak and the strong interactions have to share the same eigenstates. Within the framework of this tentative scheme, meson B first weakly decays to the weak eigenstates Dα(β) and then the latter are detected as the D1(′) by the strong decay products D*π. We predict that there exist two new particles Dα(β) with JP=1+, which were not previously identified. The good performance of the new scheme in describing the experimental data may hint at new symmetry in the weak decays of Bq to 1+ heavy–light mesons. To test the scheme proposed here, we suggest an experiment to detect the difference in the invariant mass spectra of D1 that is reconstructed from the B weak decay and from the strong decay products.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3