Tracking Defects of Electronic Crystals by Coherent X-ray Diffraction

Author:

Le Bolloc’h David1,Bellec Ewen2,Kirova Natacha1,Jacques Vincent L. R.1ORCID

Affiliation:

1. Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, UMR 8502, 91405 Orsay, France

2. European Synchrotron Radiation Facility, Avenue des Martyrs, 71, CEDEX 9, 38043 Grenoble, France

Abstract

In this article, we review different studies based on advanced X-ray diffraction techniques—especially coherent X-ray diffraction—that allowed us to reveal the behaviour of such symmetry-breaking systems as Charge Density Wave (CDW) and Spin density Wave (SDW), through their local phase. After a brief introduction on the added value of using coherent X-rays, we show how the method can be applied to CDW and SDW systems, in both static and dynamical regimes. The approach allowed us to probe the particular sliding state of CDWs systems by observing them through their phase fluctuations, to which coherent X-rays are particularly sensitive. Several compounds stabilizing a CDW phase able to slide are presented, each with a different but clearly pronounced signature of the sliding state. Two main features emerge from this series of experiments which have been little treated until now, the influence of CDW pinning by the sample surfaces and the propagation of periodic phase defects such as charge solitons across the entire sample. Phase models describing the spatial and temporal properties of sliding CDWs are presented in the last part of this review.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3