I.V-CR-γ-Convex Functions and Their Application in Fractional Hermite–Hadamard Inequalities

Author:

Vivas-Cortez Miguel1ORCID,Ramzan Sofia2,Awan Muhammad Uzair2ORCID,Javed Muhammad Zakria2ORCID,Khan Awais Gul2,Noor Muhammad Aslam3ORCID

Affiliation:

1. Escuela de Ciencias Físicas y Matemáticas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076, Apartado, Quito 17-01-2184, Ecuador

2. Department of Mathematics, Government College University, Faisalabad 38000, Pakistan

3. Department of Mathematics, COMSATS University Islamabad, Islamabad 45550, Pakistan

Abstract

In recent years, the theory of convexity has influenced every field of mathematics due to its unique characteristics. Numerous generalizations, extensions, and refinements of convexity have been introduced, and one of them is set-valued convexity. Interval-valued convex mappings are a special type of set-valued maps. These have a close relationship with symmetry analysis. One of the important aspects of the relationship between convex and symmetric analysis is the ability to work on one field and apply its principles to another. In this paper, we introduce a novel class of interval-valued (I.V.) functions called CR-γ-convex functions based on a non-negative mapping γ and center-radius ordering relation. Due to its generic property, a set of new and known forms of convexity can be obtained. First, we derive new generalized discrete and integral forms of Jensen’s inequalities using CR-γ-convex I.V. functions. We employ this definition and Riemann-Liouville fractional operators to develop new fractional versions of Hermite-Hadamard’s, Hermite-Hadamard-Fejer, and Pachpatte’s type integral inequalities. We examine various key properties of this class of functions by considering them as special cases. Finally, we support our findings with interesting examples and graphical representations.

Funder

Pontificia Universidad Católica del Ecuador Proyect Tí- tulo

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference34 articles.

1. Hermite and convexity;Aequationes Math.,1985

2. Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces;Dragomir;Proyecciones,2015

3. Hadamard-type inequalities for s-convex functions;Kirmaci;Appl. Math. Comput.,2007

4. A new generalization of some integral inequalities for (α-m)-convex functions;Math. Sci.,2013

5. Hermite-Hadamard type inequalities for p-convex functions;Iscan;Int. J. Anal. Appl.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3