Oracle-Preserving Latent Flows

Author:

Roman Alexander1ORCID,Forestano Roy T.1ORCID,Matchev Konstantin T.1ORCID,Matcheva Katia1ORCID,Unlu Eyup B.1ORCID

Affiliation:

1. Institute for Fundamental Theory, Physics Department, University of Florida, Gainesville, FL 32611, USA

Abstract

A fundamental task in data science is the discovery, description, and identification of any symmetries present in the data. We developed a deep learning methodology for the simultaneous discovery of multiple non-trivial continuous symmetries across an entire labeled dataset. The symmetry transformations and the corresponding generators are modeled with fully connected neural networks trained with a specially constructed loss function, ensuring the desired symmetry properties. The two new elements in this work are the use of a reduced-dimensionality latent space and the generalization to invariant transformations with respect to high-dimensional oracles. The method is demonstrated with several examples on the MNIST digit dataset, where the oracle is provided by the 10-dimensional vector of logits of a trained classifier. We find classes of symmetries that transform each image from the dataset into new synthetic images while conserving the values of the logits. We illustrate these transformations as lines of equal probability (“flows”) in the reduced latent space. These results show that symmetries in the data can be successfully searched for and identified as interpretable non-trivial transformations in the equivalent latent space.

Funder

US Department of Energy

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference57 articles.

1. The Role of Symmetry in Fundamental Physics;Gross;Proc. Natl. Acad. Sci. USA,1996

2. Invariante Variationsprobleme;Noether;Nachrichten Ges. Wiss. Göttingen Math. Phys. Kl.,1918

3. Symmetry meets AI;Barenboim;SciPost Phys.,2021

4. Wigner, E., Griffin, J., and Griffin, J. (1959). Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra, Academic Press.

5. Discovering Physical Concepts with Neural Networks;Iten;Phys. Rev. Lett.,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3