Modulated Lacunary Statistical and Strong-Cesàro Convergences
Author:
Romero de la Rosa María del Pilar1ORCID
Affiliation:
1. Department of Mathematics, University of Cádiz, Avda. de la Universidad s/n, 11405 Jerez de la Frontera, Spain
Abstract
Here, we continued the studies initiated by Vinod K. Bhardwaj and Shweta Dhawan which relate different convergence methods involving the classical statistical and the classical strong Cesàro convergences by means of lacunary sequences and measures of density in N modulated by a modulus function f. A method for constructing non-compatible modulus functions was also included, which is related to symmetries with respect to y=x.
Funder
Junta de Andalucía, Consejería de Universidad, Investigación e Innovación
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Reference24 articles.
1. Mursaleen, M. (2014). Applied Summability Methods, Springer. Springer Briefs in Mathematics.
2. Sur la convergence statistique;Fast;Colloq. Math.,1951
3. Sur la convergence ordinaire et la convergence asymptotique;Steinhaus;Colloq. Math.,1951
4. Sur la série de Fourier d’une fonction á carré sommable;Hardy;CR Acad. Sci. Paris,1913
5. Viszgálatok a Fourier-sorokról (Research on Fourier Series);Fekete;Math. Termész,1916