Research on Blockchain Architecture and Operating Principles Based on H-DAG

Author:

Huang Jie12ORCID,Liu Changsheng2,Harding Joseph3

Affiliation:

1. Hunan Provincial Engineering Research Center for Missile Maintenance, Changsha 410024, China

2. Department of Aviation Electronic Equipment Maintenance, Changsha Aeronautical Vocational and Technical College, Changsha 410024, China

3. Division of Information Technology, Southern University, Baton Rouge, LA 70813, USA

Abstract

A hybrid blockchain structure (hybrid directed acyclic graph, or H-DAG) is proposed in this article to solve the existing problem of blockchain architectures using symmetric key encryption technology by combining the characteristics of single-chain blockchains and DAG distributed ledgers. By improving the block and transaction structures and optimizing the consensus mechanism, the H-DAG confirmed transaction orders while maintaining the high-throughput characteristics of a DAG, thus solving the transaction order dependence problem. We introduced a lightweight PoW mechanism to the H-DAG to improve the anti-fork ability of the blockchain. An incentive mechanism was adopted in our model to compel honest nodes to be more enthusiastic about participating in, maintaining, and enhancing the security of a given network. The blockchain states achieved strong levels of consistency, and their transaction confirmation times were predictable. We evaluated the performance of the H-DAG by comparing and analyzing multiple experiments, and we modeled a forking attack strategy, verifying the resistance of the H-DAG to this attack strategy. The experimental results demonstrated that the order of transactions in the H-DAG was globally consistent, and the confirmation time of transactions was predictable. The H-DAG improved the anti-fork ability and enhanced the security of the blockchain to ensure a degree of decentralization of the blockchain system. Therefore, the system throughput was enhanced by improving the block structure using symmetric key technology.

Funder

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3