Emotion Recognition in Individuals with Down Syndrome: A Convolutional Neural Network-Based Algorithm Proposal

Author:

Paredes Nancy12,Caicedo-Bravo Eduardo1ORCID,Bacca Bladimir1ORCID

Affiliation:

1. School of Electrical and Electronics Engineering, Faculty of Engineering, University of Valle, Cali 25360, Colombia

2. Department of Electrical, Electronic and Telecommunications, ESPE Armed Forces University, Sangolquí 171103, Ecuador

Abstract

This research introduces an algorithm that automatically detects five primary emotions in individuals with Down syndrome: happiness, anger, sadness, surprise, and neutrality. The study was conducted in a specialized institution dedicated to caring for individuals with Down syndrome, which allowed for collecting samples in uncontrolled environments and capturing spontaneous emotions. Collecting samples through facial images strictly followed a protocol approved by certified Ethics Committees in Ecuador and Colombia. The proposed system consists of three convolutional neural networks (CNNs). The first network analyzes facial microexpressions by assessing the intensity of action units associated with each emotion. The second network utilizes transfer learning based on the mini-Xception architecture, using the Dataset-DS, comprising images collected from individuals with Down syndrome as the validation dataset. Finally, these two networks are combined in a CNN network to enhance accuracy. The final CNN processes the information, resulting in an accuracy of 85.30% in emotion recognition. In addition, the algorithm was optimized by tuning specific hyperparameters of the network, leading to a 91.48% accuracy in emotion recognition accuracy, specifically for people with Down syndrome.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference37 articles.

1. Carvalho, P., and Menezes, P. (2019, January 6–9). Classification of FACS-Action Units with CNN Trained from Emotion Labelled Data Sets. Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy.

2. Lectura de la Expresión Facial de las Emociones: Investigación Básica en la Mejora del Reconocimiento de Emociones;Matsumoto;Ansiedad Estres,2013

3. Ruiz, E. (2023, July 03). Temas de Interés Evaluación de la Capacidad Intelectual en Personas Con Síndrome de Down. Available online: http://wwww.centrodocumentaciondown.com/uploads/documentos/27dcb0a3430e95ea8358a7baca4b423404c386e2.pdf.

4. Programa de educación emocional. Aplicación práctica en niños con síndrome de Down;Ruiz;Rev. Sindr. De Down,2009

5. Soler Ruiz, V. (2023, July 01). Lógica Difusa Aplicada a Conjuntos Imbalanceados: Aplicación a la Detección del Síndrome de Down. Available online: https://www.tesisenred.net/handle/10803/5777?locale-attribute=ca.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3