Development of Fixed Point Results for αΓ-F-Fuzzy Contraction Mappings with Applications

Author:

Sessa Salvatore1ORCID,Jahangeer Fahad2,Kattan Doha A.3,Ishtiaq Umar4ORCID

Affiliation:

1. Dipartimento di Architettura, Università Dinapoli Federico II, Via Toledo 403, 80121 Napoli, Italy

2. Department of Mathematics and Statistics, International Islamic University Islamabad, Islamabad 44000, Pakistan

3. Department of Mathematics, Faculty of Sciences and Arts, King Abdulaziz University, Rabigh 21589, Saudi Arabia

4. Office of Research, Innovation and Commercialization, University of Management and Technology, Lahore 54770, Pakistan

Abstract

This manuscript contains several fixed point results for αΓ-F-fuzzy contractive mappings in the framework of orthogonal fuzzy metric spaces. The symmetric property guarantees that the distance function is consistent and does not favour any one direction in orthogonal fuzzy metric spaces. No matter how the points are arranged, it enables a fair assessment of the separations between all of them. In fixed point results, the symmetry condition is preserved for several types of contractive self-mappings. Moreover, we provide several non-trivial examples to show the validity of our main results. Furthermore, we solve non-linear fractional differential equations, the Atangana–Baleanu fractional integral operator and Fredholm integral equations by utilizing our main results.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference17 articles.

1. Information and control;Zadeh;Fuzzy Sets,1965

2. Statistical metric spaces;Schweizer;Pac. J. Math,1960

3. Fuzzy metrics and statistical metric spaces;Kramosil;Kybernetika,1975

4. On fixed-point theorems in fuzzy metric spaces;Gregori;Fuzzy Sets Syst.,2002

5. Contraction mappings in fuzzy quasi-metric spaces and [0, 1]-fuzzy posets;Pedro;Fixed Point Theory,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3