Prediction of High-Speed Traffic Flow around City Based on BO-XGBoost Model

Author:

Lu Xin1,Chen Cai2,Gao RuiDan3,Xing ZhenZhen4ORCID

Affiliation:

1. Experimental Testing Institute, Xi’an Highway Research Institute Co., Ltd., School of Materials Science and Engineering, Chang’an University, Xi’an 710064, China

2. College of Highways, Chang’an University, Xi’an 710064, China

3. School of Transportation Engineering, Changsha University of Science and Technology, Changsha 410205, China

4. School of Information Engineering, Chang’an University, Xi’an 710064, China

Abstract

The prediction of high-speed traffic flow around the city is affected by multiple factors, which have certain particularity and difficulty. This study devised an asymmetric Bayesian optimization extreme gradient boosting (BO-XGBoost) model based on Bayesian optimization for the spatiotemporal and multigranularity prediction of high-speed traffic flow around a city. First, a traffic flow dataset for a ring expressway was constructed, and the data features were processed based on the original data. The data were then visualized, and their spatiotemporal distribution exhibited characteristics such as randomness, continuity, periodicity, and rising fluctuations. Secondly, a feature matrix was constructed monthly for the dataset, and the BO-XGBoost model was used for traffic flow prediction. The proposed model BO-XGBoost was compared with the symmetric model bidirectional long short-term memory and integrated models (random forest, extreme gradient boosting, and categorical boosting) that directly input temporal data. The R-squared (R2) of the BO XGBoost model for predicting TF and PCU reached 0.90 and 0.87, respectively, with an average absolute percentage error of 2.88% and 3.12%, respectively. Thus, the proposed model achieved an accurate prediction of high-speed traffic flow around the province, providing a theoretical basis and data support for the development of central-city planning.

Funder

Key R&D Projects in Shaanxi Province

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3