A Cancelable Biometric System Based on Deep Style Transfer and Symmetry Check for Double-Phase User Authentication

Author:

Sedik Ahmed12ORCID,El-Latif Ahmed A. Abd34,El-Affendi Mohammed3ORCID,Mostafa Hala5

Affiliation:

1. Smart Systems Engineering Laboratory, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia

2. Department of the Robotics and Intelligent Machines, Kafrelsheikh University, Kafrelsheikh 33511, Egypt

3. EIAS Data Science Lab, College of Computer and Information Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia

4. Department of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shebeen El-Kom 32511, Egypt

5. Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

Abstract

In recent times, there has been a noticeable increase in the application of human biometrics for user authentication in various domains, such as online banking. However, the use of biometric systems poses security risks and the potential for misuse, primarily due to the storage of original templates in databases. To tackle this issue, the concept of cancelable biometrics has emerged as a reliable method utilizing one-way encryption. Several algorithms have been developed to implement cancelable biometrics, incorporating visual representations of single or multiple biometrics. This research proposes a cancelable biometric system that utilizes deep learning techniques to generate two encrypted modalities, namely text and image, using facial and fingerprint biometrics acquired from a smartphone. The system consists of two main stages: a visual encoder and a text encoder. The visual encoder converts the fingerprint style into a facial representation, creating a cancelable template to ensure the potential for cancelation. The resulting visual template is then processed by the text encoder, which employs hashing techniques to generate a corresponding text template. User authentication is automatically verified by utilizing the generated templates through Siamese networks.

Funder

Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3