Chemical, Microstructural and Morphological Characterisation of Dentine Caries Simulation by pH-Cycling

Author:

Zuluaga-Morales Juan Sebastián,Bolaños-Carmona María VictoriaORCID,Cifuentes-Jiménez Carolina Cecilia,Álvarez-Lloret PedroORCID

Abstract

In vitro simulation of natural caries is of great importance in dental research for the development of more effective clinical treatments. The pH-cycling (pHc) procedure consists of a dynamic caries process with alternating de-remineralisation periods. The current research aims to evaluate the effects of the pHc procedure on mineral dentine properties in comparison with sound dentine and natural residual caries. For this purpose, dentine slices from human third molars were submitted to cycling periods of 14 and 28 days. The chemical composition, morphological and microstructural properties of the dentine samples were examined by infrared and Raman spectroscopies, X-ray diffraction, and scanning electron microscopy techniques. In addition, the depth of the demineralisation front was evaluated by Masson’s trichrome (MT) staining. The results showed that the pHc procedure led to notable changes in the mineral composition and the crystalline characteristics with respect to sound dentine and some extent to natural caries. The MT results revealed that pHc 28 yields a deeper lesion than pHc 14, simulating potential progression of natural caries. The results of this study provide a better understanding of the mechanisms of demineralisation that could occur in an in vivo environment and provide a standardised substrate similar to natural residual caries.

Funder

Ministry of Economy, Industry and Competitiveness

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference74 articles.

1. Introduction to Dental Anatomy;Nelson,2015

2. Elements of morphology: Standard terminology for the teeth and classifying genetic dental disorders

3. Chemical composition of enamel;Curzon,1983

4. Vertebrate dental structures;Carlson,1990

5. Phosphate minerals in human tissues;LeGeros,1984

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3