Author:
Ma Xindi,Du Huicong,Lan Ping,Chen Jianhua,Lan Lihong
Abstract
The surface structure and electronic properties of Mg vacancy defects on talc (001) and impurity defects with Fe, Mn, Ni, Al, and Ca replacing Mg atoms were calculated by using density functional theory. The calculation results show that the order of impurity substitution energy is Mn < Ni < Al < Ca < Fe. This indicates that Fe impurity defects are most easily formed in talc crystals. The covalent bonding between Si atoms and reactive oxygen atoms adjacent to impurity atoms is weakened and the ionic property is enhanced. The addition of Fe, Mn, and Ni atoms makes the surface of talc change from an insulator to a semiconductor and enhances its electrical conductivity. The analysis of electron state density shows that surface states composed of impurity atoms 4S orbital appear near the Fermi level.
Funder
National Natural Science Foundation of China
Guangxi Biological Polysaccharide Separation, Purification and Modification Research Platform
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献