Author:
Zhang Zilong,Ren Tingzhi,Cheng Jiayuan
Abstract
The cone crusher is the main equipment in the particle crushing process. The productivity of the cone crusher is determined by the motion characteristics of particles passing through the crushing chamber. In order to accurately describe the motion characteristics of the particles, the influence of the spatial compound motion of the mantle rotates around the central axis of the cone crusher and its central axis on the motion characteristics of the particles is investigated, then the improved motion model is established. Through the coordinate system transformation matrix, the motion characteristics of the particles including spatial sliding, free-falling, and spatial compound falling are solved. The applicability and accuracy of the improved model in describing the motion characteristics of the particle were verified through the experiment using a reduced-scale experimental cone crusher to simulate the motion characteristics of the particle. Based on the improved model, the motion characteristics of the particles in the CF11 hydraulic cone crusher can be simulated. With the decrease in height, the motion characteristics of particles gradually change from spatial sliding to spatial compound falling and finally to free-falling. The particles deflect circumferentially around the central axis of the cone crusher. The circumferential deflection of particles is directly related to the motion characteristics including spatial sliding and spatial compound falling. The improved model provides a theoretical basis for the high energy design of the crushing chamber and productivity improvement of the cone crusher.
Funder
National Key Technology R&D Program of China
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献