V2X Wireless Technology Identification Using Time–Frequency Analysis and Random Forest Classifier

Author:

Skiribou CameliaORCID,Elbahhar FouziaORCID

Abstract

Signal identification is of great interest for various applications such as spectrum sharing and interference management. A typical signal identification system can be divided into two steps. A feature vector is first extracted from the received signal, then a decision is made by a classification algorithm according to its observed values. Some existing techniques show good performance but they are either sensitive to noise level or have high computational complexity. In this paper, a machine learning algorithm is proposed for the identification of vehicular communication signals. The feature vector is made up of Instantaneous Frequency (IF) resulting from time–frequency (TF) analysis. Its dimension is then reduced using the Singular Value Decomposition (SVD) technique, before being fed into a Random Forest classifier. Simulation results show the relevance and the low complexity of IF features compared to existing cyclostationarity-based ones. Furthermore, we found that the same accuracy can be maintained regardless of the noise level. The proposed framework thus provides a more accurate, robust and less complex V2X signal identification system.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference42 articles.

1. Review of V2X–IoT Standards and Frameworks for ITS Applications

2. ITS-G5 Access layer specification for Intelligent Transport Systems operating in the 5 GHz frequency band,2019

3. Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (3GPP TS 36.300 version 14.2.0 Release 14),2017

4. 5G; Overall description of Radio Access Network (RAN) aspects for Vehicle-to-everything (V2X) based on LTE and NR (3GPP TR 37.985 version 16.0.0 Release 16),2020

5. Survey of Spectrum Regulation for Intelligent Transportation Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3